4,237 research outputs found

    Gas diffusion liquid storage bag and method of use for storing blood

    Get PDF
    The shelf life of stored whole blood may be doubled by adding a buffer which maintains a desired pH level. However, this buffer causes the generation of CO2 which, if not removed at a controlled rate, causes the pH value of the blood to decrease, which shortens the useful life of the blood. A blood storage bag is described which permits the CO2 to be diffused out at a controlled rate into the atmosphere, thereby maintaining the desired pH value and providing a bag strong enough to permit handling

    Performance of silicon solar cell assemblies

    Get PDF
    Solar cell assembly current-voltage characteristics, thermal-optical properties, and power performance were determined. Solar cell cover glass thermal radiation, optical properties, confidence limits, and temperature intensity effects on maximum power were discussed

    Metastability and the Casimir Effect in Micromechanical Systems

    Full text link
    Electrostatic and Casimir interactions limit the range of positional stability of electrostatically-actuated or capacitively-coupled mechanical devices. We investigate this range experimentally for a generic system consisting of a doubly-clamped Au suspended beam, capacitively-coupled to an adjacent stationary electrode. The mechanical properties of the beam, both in the linear and nonlinear regimes, are monitored as the attractive forces are increased to the point of instability. There "pull-in" occurs, resulting in permanent adhesion between the electrodes. We investigate, experimentally and theoretically, the position-dependent lifetimes of the free state (existing prior to pull-in). We find that the data cannot be accounted for by simple theory; the discrepancy may be reflective of internal structural instabilities within the metal electrodes.Comment: RevTex, 4 pages, 4 figure

    Quantum electromechanics: Quantum tunneling near resonance and qubits from buckling nanobars

    Full text link
    Analyzing recent experimental results, we find similar behaviors and a deep analogy between three-junction superconducting qubits and suspended carbon nanotubes. When these different systems are ac-driven near their resonances, the resonance single-peak, observed at weak driving, splits into two sub-peaks (Fig. 1) when the driving increases. This unusual behavior can be explained by considering quantum tunneling in a double well potential for both systems. Inspired by these experiments, we propose a mechanical qubit based on buckling nanobars--a NEMS so small as to be quantum coherent. To establish buckling nanobars as legitimate candidates for qubits, we calculate the effective buckling potential that produces the two-level system and identify the tunnel coupling between the two local states. We propose different designs of nanomechanical qubits and describe how they can be manipulated. Also, we outline possible decoherence channels and detection schemes. A comparison between nanobars and well studied superconducting qubits suggests several future experiments on quantum electromechanics.Comment: 6 pages, 3 figures, 1 tabl

    Pulmonary arterial hypertension: a new era in management

    Get PDF
    The document attached has been archived with permission from the editor of the Medical Journal of Australia. An external link to the publisher’s copy is included.Pulmonary arterial hypertension (PAH) is a heterogeneous condition with a wide range of causes. The diagnosis is often delayed or missed. PAH is covert in its early stages, when its detection and treatment should have the most impact. Access in Australia to effective PAH therapies has lagged behind that in other affluent countries. New agents for PAH, now becoming available, improve symptoms and reduce pulmonary resistance, with some demonstrating an ability to reverse remodelling of the right ventricle. Best management of PAH is comprehensive and multidisciplinary. Centres of excellence are needed in geographically strategic areas. Aggressive efforts must be made to diagnose PAH and to facilitate access to effective therapies.Anne M Keogh, Keith D McNeil, Trevor Williams, Eli Gabbay and Leslie G Clelan

    Quantum Effects in the Mechanical Properties of Suspended Nanomechanical Systems

    Full text link
    We explore the quantum aspects of an elastic bar supported at both ends and subject to compression. If strain rather than stress is held fixed, the system remains stable beyond the buckling instability, supporting two potential minima. The classical equilibrium transverse displacement is analogous to a Ginsburg-Landau order parameter, with strain playing the role of temperature. We calculate the quantum fluctuations about the classical value as a function of strain. Excitation energies and quantum fluctuation amplitudes are compared for silicon beams and carbon nanotubes.Comment: RevTeX4. 5 pages, 3 eps figures. Submitted to Physical Review Letter

    Dynamics of a suspended nanowire driven by an ac Josephson current in an inhomogeneous magnetic field

    Full text link
    We consider a voltage-biased nanoelectromechanical Josephson junction, where a suspended nanowire forms a superconducting weak-link, in an inhomogeneous magnetic field. We show that a nonlinear coupling between the Josephson current and the magnetic field generates a Laplace force that induces a whirling motion of the nanowire. By performing an analytical and a numerical analysis, we demonstrate that at resonance, the amplitude-phase dynamics of the whirling movement present different regimes depending on the degree of inhomogeneity of the magnetic field: time independent, periodic and chaotic. Transitions between these regimes are also discussed.Comment: 7 pages, 5 figure

    Giant slip lengths of a simple fluid at vibrating solid interfaces

    Full text link
    It has been shown recently [PRL 102, 254503 (2009)] that in the plane-plane configuration a mechanical resonator vibrating close to a rigid wall in a simple fluid can be overdamped to a frozen regime. Here, by solving analytically the Navier Stokes equations with partial slip boundary conditions at the solid fluid interface, we develop a theoretical approach justifying and extending these earlier findings. We show in particular that in the perfect slip regime the above mentioned results are, in the plane-plane configuration, very general and robust with respect to lever geometry considerations. We compare the results with those obtained previously for the sphere moving perpendicularly and close to a plane in a simple fluid and discuss in more details the differences concerning the dependence of the friction forces with the gap distance separating the moving object (i.e., plane or sphere) from the fixed plane. Finally, we show that the submicron fluidic effect reported in the reference above, and discussed further in the present work, can have dramatic implications in the design of nano-electromechanical systems (NEMS).Comment: submitted to PRE (see also PRL 102, 254503 (2009)

    A manual physical therapy approach versus subacromial corticosteroid injection for treatment of shoulder impingement syndrome: a protocol for a randomised clinical trial

    Get PDF
    Introduction: Corticosteroid injections (CSI) are a recommended and often-used first-line intervention for shoulder impingement syndrome (SIS) in primary care and orthopaedic settings. Manual physical therapy (MPT) offers a non-invasive approach with negligible risk for managing SIS. There is limited evidence to suggest significant long-term improvements in pain, strength and disability with the use of MPT, and there are conflicting reports from systematic reviews that question the long-term efficacy of CSI. Specifically, the primary objective is to compare the effect of CSI and MPT on pain and disability in subjects with SIS at 12 months. Design: This pragmatic randomised clinical trial will be a mixed-model 235 factorial design. The independent variables are treatment (MPT and CSI) and time with five levels from baseline to 1 year. The primary dependent variable is the Shoulder Pain and Disability Index, and the secondary outcome measures are the Global Rating of Change and the Numeric Pain Rating Scale. For each ANOVA, the hypothesis of interest will be the two-way group-by-time interaction. Methods and analysis: The authors plan to recruit 104 participants meeting established impingement criteria. Following examination and enrolment, eligible participants will be randomly allocated to receive a pragmatic approach of either CSI or MPT. The MPT intervention will consist of six sessions, and the CSI intervention will consist of one to three sessions. All subjects will continue to receive usual care. Subjects will be followed for 12 months. Dissemination and ethics: The protocol was approved by the Madigan Army Medical Center Institutional Review Board. The results may have an impact on clinical practice guidelines. This study was funded in part by the Orthopaedic Physical Therapy Products Grant through the American Academy of Orthopaedic Manual Physical Therapists. Trial Registration: http://clinicaltrials.gov/NCT01190891
    corecore